
B L A C K W O O D  D E S I G N S  

Principles of  
Program 
Analysis 

  

  

O V E R V I E W  This is a review of the contents of Principles of Program Analysis (2005) 2ed 

Flemming Nielson, Hanne Riss Nielson, Chris Hankin.  It covers techniques for better 

understanding the behaviour of a program (esp in the edge case) 

B E N E F I T S  Smaller memory footprint, faster execution, often easier to understand than other methods 

U S E S  Compilers 
Finding calculations that may have flaws 

Tracing erroneous outcomes to fault points 
Find code that is unbounded 
Testing software 
Analyzing software for incomplete implementation 
Optimizing program elements 
 

S T R U C T U R E S  Lattice 
Expression tree 
Graph 
Control flow graph 
Data flow graph 
Annotations 
Lists 
Sparse matrix 

  

Copyright © 2008-2013 Blackwood 
Designs, LLC.  All rights reserved. No 
part of this document may be 
reproduced or transmitted in any form 
or by any means, electronic or 
mechanical, including photocopying 
and recording, for any purpose, 
without the express written permission 
of Blackwood Designs. 

SURGEON GENERALS WARNING – Prolonged butt-scratching may result in Repetitive Stress 

Injury. 

F I L E : J:\My Documents\Experimental Languages and VMs\Book Program Analysis;2.doc 



P R I N C I P L E S  O F  P R O G R A M  A N A L Y S I S  ·   2 0 1 3 . 0 7 . 2 5   1 

 

 

BOOK REVIEW 

Principles of  
Program 
Analysis 

This note is a review of the book “Principles of Program Analysis,“ to help understand the 

narrative.   The book uses a too-complex method of description. 

1. Statements into a graph, expressions & sub-expressions into nodes 

2. Form base set of attributes for nodes 

3. Form complete attributes of each node 

4. Answer questions about procedure, etc. 

Compilers use these techniques (or similar) to: 

1. Remove superfluous computations (dead code propagation, constant propagation) 

2. Merge redundant computations 

3. To schedule computation and other operations 

Analysis tools may also suggest that these exhibit possible implementation mistakes. 

1 Notation 
Syntax:  

The language is broken down along syntax into nodes.  Implicitly there is only one 

operation per node.  Expressions are decomposed into separate sub-expression for 

each action 

Semantics: 

1. Set of values, state, variables and their type, sets of variables (closures) 

2. Specifies how a program transforms one value into another 

Program analysis: 

1. Set of properties 

2. Specifies how a program transforms one property into another 

Nodes are assigned a unique numerical identifier. 

A node could be identified by an internal pointer.  Using a file-line-column-span (e.g. 

mapping to the source file) is not recommended.  Constant folding and merging 

R A N D A L L  M A A S  “Principles of Program 

Analysis” 2ed 

Flemming Nielson 

Hanne Riss Nielson 

Chris Hankin 

2005, Springer 

Supplements at: 

http://www2.imm.dtu.dk/

~riis/PPA/ppasup2004.ht

ml 

semantics  – p211 

labels – p6 



P R I N C I P L E S  O F  P R O G R A M  A N A L Y S I S  ·   2 0 1 3 . 0 7 . 2 5   2 

 

duplicate code operations, make it possible for several different source-file locations 

to map to the same node. 

The text prefers to use a small number of base abstractions.  

 “Lattices” are used for structures 

 The process of applying rules, broadly, uses the concept of fixed point 

 Working thru constraints is handled by work-lists 

To look at an analysis, the book often defines a small grammar; some massaging is often 

needed to make it doable. 

1.1 Fixed point 
Fixed point is used, idiomatically, to mean repeatedly resolving references – e.g. values 

expressions – until no more can be resolved.  Specific examples include: 

 Producing a trace 

 Constant folding 

 Dead Code elimination 

 Abstract interpretation  

 Approximating fixed point 

The technical meaning of fixed point is a value that a function (when given it as an argument) 

returns.  In this case, the “value” is the set of variables and their values (or unresolved 

expression, as the case may be).  The function is the process of resolving expressions into 

values.  This is repeated until nothing more can be resolved this way. 

1.2 Lattice 
The text prefers to make structures into complete lattice for its analysis.  Lattices are 

essentially tree structures: the set of child nodes (of two nodes) don’t partially overlap – they 

are either a subset, the same, or share no common elements.  In, complete lattices all children 

(subsets) have a greatest lower bound, a least upper bound, a least and a greatest element.  The 

right most child node is often the left most child of a sibling. 

Treating lattices with bit vectors, although not clearly defined. 

1.3 Work-lists 
Work-list builds a set of items that satisfies constraints.  These constraints are in a graph 

structure, and numbered.  These algorithms relate to repeatedly applying the rules until solved 

(see fixed point) 

2 Analysis 
The techniques should be sound and complete; discussion on how to tell.  Start with a 

restricted class analysis.  Define correctness relations for each type of analysis. Starts with 

simple and expands to more intermediary steps in the analysis.  This leads to what the 

elements analysis are:  

 Values  Heap  Property 

 Expression  Pointer  Selector 

 Type  State  Location 

fixed point – p8 

approximating fixed point 

– p221-22 

complete lattice– p393 

work list – p368 



P R I N C I P L E S  O F  P R O G R A M  A N A L Y S I S  ·   2 0 1 3 . 0 7 . 2 5   3 

 

 Variable  Label  Constraint 

Types of analysis by pairs of these elements 

State x State : Constant propagation analysis 

Env x Env : Control flow analysis 

Var x Label : Data flow 

Values x Properties : Abstract interpretation 

2.1 Value and Data flow 
The data flow for each node and the variables it affects are tracked – linking each variable to 

nodes that may have assigned it. 

Traditionally, this is a transposed dataflow matrix.  This maps a node to the symbols it 

changes.  Each row corresponds to a symbol (variable), each column corresponds to a 

node that may have assigned it a value; this matrix is often quite sparse. 

Other similar attributes include mapping to possible value sets, and variable aliasing. 

Nodes have an entry and exit (transposed) dataflow matrices, defining its action.  The book 

needs two matrices are needed since the matrices are not placed on the arcs of the graph.  A 

node may have many inputs (e.g. branch targets).  Its entry matrix is the union of the exit 

matrices of the nodes that link to it.  The exit matrices may be used to identify what is affected 

when a node is modified. 

1. A node that does not modify a variable will duplicate the variable’s row in the entry 

matrix to the exit matrix. 

2. A variable assignment to a value based on a previous value will duplicate the 

variable’s row in the entry matrix to the exit matrix and add this node 

3. A variable assignment to an expression’s value that does not depend on its previous 

value (e.g. a constant) will have a single entry for this node.   It will not duplicate 

the variable’s row in the entry matrix to the exit matrix. 

The EQUATIONAL APPROACH and the CONSTRAINT BASED APPROACH. Each nodes exit is 

defined in terms of its entry matrix, and optional replacement row for a variable.  The entry 

matrices are the union of all the exit matrices that feed into the node. 

These dataflow matrices are referred to as Var x Label 

Most of these matrices are sparse; the text introduces a notation of tracking an optional 

reference (e.g. a previous node) and the changes from that matrix. 

Useful for determining which formulae are not used (e.g. Dead Code elimination), or the 

limits of their inputs. 

Constant folding (an example of a code transform), aka constant value propagation. 

1. In all expressions, replace variables that have only a constant value, with that value 

a. Analysis may find that a variable has a constant value whenever a given 

node is entered; The variable may be eliminated for that node 

2. Evaluate sub-expressions that involving only constants 

3. Repeat for any variables that have been found to have a constant value 

Reaching definitions – p3 

Var x Label – p7 

least solution – p7 

constant folding – p27 



P R I N C I P L E S  O F  P R O G R A M  A N A L Y S I S  ·   2 0 1 3 . 0 7 . 2 5   4 

 

Values – simple values, states, closures, etc. 

2.2 Types 
Underlying types are the types the language nominally specifies (also called the ordinary 

types) 

Free variables and their type; 

Annotated types, with the annotations including: 

 Rules to the effect: When statement S is executed: if properties ABC are true, 

then it specifies the resulting properties XYZ after execution.  

 A set of functions that return an item of a given type 

 Program points (a node).   Regions of points don’t partially overlap – they are 

either a subset, the same, or share no common elements. 

2.3 Variables 
Variables hold values; most of the tracking is best done with variables.  

These techniques are combined in abstract interpretation to find: 

 All possible values a variable (or expression) may (or may not) have at each 

point. 

 A trace – the “record [of] where the variables have obtained their values in the 

course of the computation.” This is found by rippling thru all the places where a 

variable can be set and used. 

Not all variables are named – such as those implicit as the output step of an expression. 

Different incarnation of variable (relative to procedure).  Author uses a location.  Single 

assignment variables 

Definition point – points where function abstractions are created; variables assigned value. 

Use point – points where functions are applied; variable value is accessed. 

Ranking includes: 

 Dead – the value is not used at all 

 Faint variable – dead or is used only to calculate new values for faint variables 

 Live variable – if any successor uses the variable before it is redefined 

 Strongly live – live but not faint 

2.4 Expressions 
Ranking of expressions based on whether the result is used on all paths, some paths or none. 

 Killed expression 

 Generated expression – evaluated, none of its inputs are modified 

 Very busy expression – result is always used before any inputs are redefined 

 Available expressions – expressions that have been computed and not modified 

later. 

values – p211 

underlying type – p295 

type environment – 

p22 
annotated type – p287 

annotated type  system– 

p17 

program point – p284 

abstract interpretation  – 

p13 

trace – p13 

definition point – p145 

use point – p145 

faint variable – p136 

live variable – p49 

strongly live variable – 

p136 

very busy expression– p46 

available expressions – 

p39 



P R I N C I P L E S  O F  P R O G R A M  A N A L Y S I S  ·   2 0 1 3 . 0 7 . 2 5   5 

 

Various analyses to tell, for a given expression, its: 

 The type of its result, given its inputs. 

 Which storage locations have been created, accessed and assigned 

 Which exceptions may result 

 The regions of program points involved 

A notation that has each statement specify 

When statement S is executed: if properties ABC are true, then it has the following 

the effect it. 

Communication analysis to determine the communication behaviour of each expression: 

 Allocating channels 

 Entities sent over channels 

 Entities received 

 Behaviour of the process being generated 

 Establishing temporal order and causality 

2.5 Reference and Shape Analysis 
The analysis techniques proceed from the simple to more complex: 

 Variables are allocated statically 

 Variables can be allocated statically or on the stack 

 Variables can be allocated statically, on the stack, or dynamically elsewhere 

Location – where a variable can be stored. Dynamic allocation allows an unbounded number 

of variables can be allocated.  In this case representing the location in a more abstract manner 

(a bit more symbolically) and compactly to be tractable. 

Pointers are a class of variables that can refer to locations.  The analysis looks only at 

pointers, operations, and expressions of. 

Translate into single assignment form, where each variable is assigned only once: 

1. Identify points where flow of control may join and special assignments are to be 

inserted 

2. Rename variables 

Regions – inference, region names, variables, static regions. 

Shape analysis: the finite characterization of the shape of data structures – which could 

conceivably be unbounded.  Predict null dereference.  Then apply heap analysis. A heap 

is a set of links between locations: 

 Table of edges between two locations and selector name on edge. 

 Selector names are essentially field names 

 Pointers have edges with empty selector names. 

One approach is to, apply a Knuthian transform to the data to make it a binary tree.  Selector 

names include next, prev, address of variable. 

type judgment – p286 

side effect analysis – p320 

exception analysis – p325 

effect system– p17 

communication – p339 

1
st
 order analysis – p212 

location – p105 

abstract location – p110 

pointer expression – p107 

shape analysis – p104 

heap – p104 

abstract heap – p111 

A heap is not the kind referred 

to in C memory allocation 

selector names – p104 



P R I N C I P L E S  O F  P R O G R A M  A N A L Y S I S  ·   2 0 1 3 . 0 7 . 2 5   6 

 

Equivalent strings of selectors. 

Other operations translated to three address codes 

Shape graph 

With dynamic allocation, the analysis proceeds: 

1. Split heap into separate heaps, and see how the heaps refer to each other (otherwise 

ignoring the internal structure) 

2. Shape of heap’s internal structure; approximate the access paths 

2.6 Control Flow analysis 
Developed for functional languages 

Dead code.  To be useful this process must repeatedly strip off those that aren’t live to find 

cases where variable is dead but increments itself (appearing live, at least locally).  Remove 

expression with effect or use. 

Performing loop unrolling.  Divide and conquer by splitting graph (by duplicating nodes) into 

portions that can be partially evaluated and those that cannot.  Then analyze. 

A basic block is a sequence of statements (executed in order).  The first statement is the 

entry point, and the only exit point is the last statement (which may be a branch).  

Path: the list of blocks traversed to reach the current one (see also trace). 

Valid paths: paths with proper nesting of calls.  This helps a lot of the analysis of calls and 

returns. 

Call Strings with unbounded length (e.g. recursive) p95 

Call string with bounded length p97 

Dynamic dispatch is hard.  OOP is hard too, depending on the style of call.  The text doesn’t 

make a distinction between the dynamic dispatch of Objective-C (etc) and the complexities of 

C++, Java, C#. 

Cartesian product algorithm – developed for object-oriented languages. 

Adding in data flow analysis helps. 

2.7 Constraint Based Analysis 
Constraints on types, variables, operations.  Constraints include: 

 Information true (as labels) on entry to a block 

 Information true on exit from a block 

Correctness relations 

3 Data Analysis 
Intraprocedural analysis limits itself to operations with in procedure; calls are treated as 

simple operation with large number of side-effects.  

Interprocedural analysis – use of call strings 

transfer function – p110 

shape graph – p109 

abstract heap – p111 

sharing information – p112 

2
nd

 order analysis – p212 

basic  block – p136 

valid paths– p89 

Cartesian Product 

Algorithm – p145 

– p141 

data analysis – p35 



P R I N C I P L E S  O F  P R O G R A M  A N A L Y S I S  ·   2 0 1 3 . 0 7 . 2 5   7 

 

Structural Operational Semantics.  Each node is called a configuration, and is a state (variable 

binding) and an optional statement.  Transitions are statement and state mapping to a 

configuration. 

State  (aka model) variable’s and  their values (including linkages) at a given point in time 

Monotone framework 

 Complete lattice, which satisfies the ascending chain condition 

 A set of space functions 

 A finite flow 

 A finite set of labels 

 Extremal value 

 A mapping from labels to transfer function 

4 Abstract Interpretation 
Correctness relation: R : Values x Properties 

Design of Property Spaces. Their functions and computations, relationships between them. 

Galois Connections and Galois Insertions.  Means of making property space less costly can 

generate further analysis.  Extraction functions. 

Design of Galois Connection: 

1. Sequential Composition 

2. Catalogue of combination techniques 

a) Independent attribute method 

b) Relational method 

c) Total function space 

d) Monotone function space 

e) Direct product 

f) Direct tensor product 

3. Induced operations 

Sets of state analysis p265 

5 Type and Effect System 
Safety properties: if point X is reached, properties XYZ will hold 

6 Algorithms 
Flow variable 

Strong Components: “maximally strongly connected subgraphs” 

Induction – mathematical induction; structural induction 

monotone framework – p68 

– p212 

– p282 

– p222 

flow variable – p366 

strong components – 

p381 


